9IMM

ORAL COMMUNICATION (MATHEMATICS AND MEDICINE)

Comparing different structural assumptions in atherosclerotic plaque modelling

N. EL KHATIB^a, O. KAFI^b, D. OLIVEIRA^c, A. SEQUEIRA^b, <u>J. TIAGO</u>^b

^a Department of CS and Math., Lebanese American University, Byblos, Lebanon.

^b CEMAT, Univ. Lisboa, Lisbon, Portugal. jorge.tiago@tecnico.ulisboa.pt https://cemat.tecnico.ulisboa.pt/

^c Department of Mechanical Engineering, University College London, London, UK

Abstract

Atherosclerosis is associated with several cardiovascular pathologies which together are responsible for a large number of deaths in Western countries. After a long inflamatory process, a plaque grows within the arterial intima resulting in the thickening and loss of elasticity of the arterial walls. A vulnerable plaque may break off and be transported by the bloodstream eventually blocking it at a narrower point of the vessel tree. Besides, a thrombus can be originated, triggering similar consequences. In this talk, we compare the effects across different atheromatous plaque material assumptions on hemodynamics and biomechanics within a partly patient-specific computational domain representing an atherosclerotic artery. A fullscale 3D FSI numerical model is implemented and different material hyperelastic assumptions are considered for comparison purposes. Computed hemodynamic parameters and structural stress are shown and analyzed.

References

 N. El Khatib, O. Kafi, D. Oliveira, A. Sequeira, J. Tiago: A Numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery. Mathematical Modelling of Natural Phenomena. bf 18, 26 (2023)